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may be analyzed by the same technique, with

: e x41
(5.65) AR =X § (As) A, >< v, ,;
321 3 )
and =
(5.66) APy = -8 ey .
as | 70| < 1/ 03~ Il As]l ), ana for
n
(5.67) =3 } wu Pt e, .
o 3
one has
RN 3e! ' o k)
(5.08) B g o< L2077 poaep, parouyl ¢ 2SI gy
= a-fas] = a-psl
with ; ’
’?
(5.69) el < D1 Y ol - livli

J=1
fryom (5.67).

Another analytic approach to the approximate solution of (4.5) which also vields

error bounds is to solve (5.61) by iteration, as || ).'/,().)S” <X [29]) .

6. :)_'n_(:«s;_vi_nﬂr;\_ﬂ_u»r 7(7'_0';7:(_\_nm‘l_gpn_ri-;'_.j‘)izf_»fi dnverses. M tention will now be devoted to
linear problems which are ill-posed because the lincar operator involved doas not
have a bounded inverse. As the solutions, if any, of ill-posed problems do not de-
pend on the data in a continuous fashion, it might be expected in this situvaticn that
analytic perturbation methods will be of little utility, or can be applied only unde:
very restrictive conditions. For example, there is an inherent limitation as to how
well an operator B ¢ L(X,Y) without a continuous inverse can be approximated by an
operator A belonging to the class g C L(X,Y) of operators with continuous in-

=% .
verses A~ C L(Y.X). From Theorem 5.1,

(6.1) fis~all = |l aal] 2 TFX:TH .
otheawise, the assumption that B ¢ g would be contradicted. Also, from (6.1),
(6.2) N 3! VL TP 13-

bl n-al) I anl

-1 s S et
so0 that " A " and the approximate condition number

(6.3) X (0) >_ _"_ML > _H.“_.[L = Y
Tl T aadl

grow without limit as “ AA" + 0. Clearly, computational difficulties can b2 expce-

pected in the caleulation of A—l or in the solution of the linecar eqguation (1.1) if
A is very close in the analytic sense to an operator B which does not have a con-

tinuous inverse.
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. Theorem 6.1, If {l\n) C g is any scquence of lincar operators such that

lim Hnn-n ” = 0, then B ¢ g2 if and only if (6.2) holds for each A=A , n =
n > n

B0 o f

Proof: If B ¢ 92, then it has alrcady been shown that (6.2) holds for cach ;\“
To show the converse, suppose that R ¢ @ , and choose n  sufficiently large so tho
" N\n” = ” I\n—-h ” < 1/2” 13—1” . It then follows from (5.2) that

-
(6.4) ] ” A_] ” ; ''''' " 'n"" Jl "_‘:]“' < ‘”‘1'\'1:\—"” '3
" N | | n

a contradiction of (6.2) which proves the theorem. QED

An evident drawvback of analytic perturbation H\OOLS'" is that, in gencral, no
conclusions can be drawn from 1the existence of I\-l € L(Y,X) about the invertibilitw
or noninvertibility of any operator B for which ineqguality (6.1) holds. The alge-

braic theory, on the other hand, states that if B is the finite rank modi fication

3 : . =1 5 . ;
(5.42) of an invertible lincar opcérator A ¢ &, then B exists if and only 3f

: -1
(6.5) 8w det(l, . +%vk Ta, >)FO.
ij i j
of coumrse, onc would still expcect computational difficulty if B  is nearly sincula
; ’ ; = s
especially if the inner products Qij = S v].A uj R et [ (N ony be

calculated approximately.
The algebraic approach also provides information in the singular case. $u: Doe-
ing that & = 0, censider the transposed homogencous eguation
n s
(6.6) ¢(a+t § u 2< v)=0
. i 1
i=1

*
for t ¢ X . Using the technigue of §5b, this is equivalent to the finite linear

algcbraic system

n

(6.7) Tj + izl Tiqij = 0, =12, Lo,

for Tj = < t,u, > . The system of equations (6.7) is the transposed homogcneous
J

system corresponding to (5.44). If 6 = 0, then (6.7) has 4 1lincarly independent

solutions

(x)

(6.8) £ et e

g tig eeser Yo K= 1250008y

and, corresponding to these, cquation (6.6) also has d linearly independent solu-

T(k)
n

tions
n n
" - % o <) A
(6.9) . Rl ’ vl ] e TR
: : i=1 i=l 7
X =11,2,...,4. Likewise, the homogencous system
a .
(6.10) £ + ) nijcj = 0, g T 7 ERR
i=1
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has @ lincarly independent solutions

< 2 3 03
(6.11) L T R LR R U S S
1 2 n :
from vhich are obtained the corresponding lincarly independent solutions
: n T n o8
(6.12) i ) L T ) gi¥le
§=1 J J 3=1 J J
X =1,2,...,d, of the homogcncous equation
n
(6.13) e § u, P wiw=0,
55 T i |
Representing the right-hand sides of the system (5.44) as the vector ‘
T =] -1 -1 ¥ i
6.14) = il el = (el 22NN 2P DN Tz
(6 L= (L.t W) e vy v : S

it is seen immediately that the conditions for the solvability of the finite inhomo-

geneous system (5.44) and the equivalent inhomagencous cguation (2.3) for the case

S = 0 are &
= X s 2 <
(6.15) <T(}'),(,>:~< ; <'l_( )vj,:z> = <t0),z>- [ .
P,
X =1,2,...,38; that is, 2z must be orthogonal to all solutions of the homogeneous

equation (6.6). If (6.15) is satisfied, then the gceneral sclution of (2.3) may b.

written as
ad

(6.16) W= oW ) (!).\-.'()') ,.
: k=1
vhere W€ is some particular solution of (2.3), and the complcwsntary vectors
d
o ; X
(6.17) S ow = w((l],(tz,.. .,(\k) = )-:);] ﬂkw( )

satisfy the hoimogeneous cguation (6.13) for arbitrary ul,uz,...,ﬁk -

.Usually, in actual computational solution of lincar equations, the distinction
bctwéon the singular and nonsingular cascs is not as clear-cut as in the alternative
(1.1a) or the Fredholm theory. In practice, an objective or subjective standard is
set for what constitutes an "acceptable" (approximate) solution, and one of the fol-
lowing situations is observed: k

(i) An acceptable solution is obtained,
or
(6.18)

(ii) either no solution at all is found, or the computed

solution is unacceptable.

In the computationally sipgglar case (6.18ii), the method used to solve (1.1) or

invert A may break dowh because A doces not have n"bounded inverse, or is analyti-

cally close to an operator B ¢ J. On the other hand, the algorithm cmployed may

actually be trying to solve the system (5.44) with & = 0 and vithout (6.15) holdina

to the desired degree of accuracy. This will be called an algebraic catastrophe of 1

type I . In the sccond situation described in (6.18ii), the acceptable particular

“-23-
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5 ~ . v X
solution w may be contaminated by a complementary vector (6.17) to the extend that
the resulting solution is unacceptable. Thic algebraic catastrophe of tupe 11 can
occur in the numerical solution of diffcrential cquations by the use of appmoximating

difference equations. For cxample, the diffcerence equation

(6.19) 3u + Bu - 3u =0
. nil n n-1
with the initial conditions
1

6. 20 s = =~

( ) Y 1, u, %
has the bounded solutions

In
(6.21) Un = (3’) ] n=0,Y%,2,.,.4

which may be the ones considered to be acceptable. However, a slight perturbation of

(6.20), such as rounding % to eight decimal places,

(6.22) wo =1, wl = 0.33333333

gives the corresponding solutions W of 3wn+l + 8wn = 3wn_1.= 0 as

(6.23) w = (0.999995999) ()™ + (0.000000001) (-3)" ,
>

n=1,2,..., and the second term on the right-hand side of (6.23) will cventually
wrcak havoc with the accuracy of the approximation of u by w

n n
As indicated in §)b, if the operator A is singular, then a gencralized invers

1,

A of A having certain useful properties may be sought, for cxample, to give a

solution of (1.1) in the form (1.4) if (1.1) is consistent. hAs (1.5) indicates, the,
T : s : > : T

vector x = A'y will be a particular solution of (1.)) for any inner inverse & o

A. An algcebraic perturbation method may be used to obtain inner inverses of sinoular

operators which have a Fredholm theory, under the technical assumption that the space
* & .

Y is reflexive, that is, Y

(6.24) u* = {u

Y (38, p.192]. In this case, if

* * *
],“2,...,ud} Coy
is a set of lincarly independent functionals on Y , then the Hahn-Eanach theorem

* 1l

guarantces the existence of a set of @ 1lincarly independent vectors in Y to which
the Gram-Schmidt orthonormalization process [38, p. 116] may be applicd, if ncces-

sary, to obtain the set

(6.25) U =~ {ul,uzp...,ud) C X
for which
* *
(6.26) < ui'“j > = <\)i,u:j > = Gij 5 £¢3 = 1200 v i@

where -Gij < again denotes the Kronecker delta. Similarly, given a sct of lincarly
independent vectors j
(6.27) V= v,

a set of functionals

2,...,vd) G X,

*

* *
{6.28) vV = {vl,v

* *
2....,vd) Cx
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exists such that

*
(6.29) o vi,vj P = 6ij' 1o = Y, 2000060
whether X is reflexive or not.

Theorem 6.2, Suppose that A ¢ L(X,Y) has a Fredholm theory, and

*
(G.30) uih=Av=0
*

. % * * * :
if and only if u ¢ span {n],n?,...,nd) Cy and v ¢ span{v ,v?,.. .,\'d) C X, where

1
the defect @d of A is positive. Then, for uk ¢ U and v; € V¥V ; k= 3,2,

. “
vhere U and V. are defined by (6.24)-(6.29), the operator

(} :
(6.31) B=A - ) \lk >< v
‘ N k
k=1 B
is invertible, and
(6.32) - AR = A -
so that /\+ = B_l» is an inncy inverse of A . >

Proof: To show that B is invertible, consider the homogencous eguation Bz =

0, which is equivalent to

a *
(6.33) Az = ) u <N oz 2

: X | 3

X=1
As this cquation is solvable if and only if the right-hand side is orthegonal to
* * *
ul,uz,...,ud because A has a Fredholm theory, it follows from (6.26) that

. *

(G. 34) <\')’,7.> = Ol e =Y ed
and thus Az = 0. This means that, 2z 4ds of the form z =a v, L av_ % (.. + QN
: ' 3 3 2 2 aa
where the coefficients &k are given by (6.34), and hence z = 0 is the unique
solution of the homogencous cquation Bz = 0, which implics the existerce of B

To prove (6.32), note that from (6,29), (6.30}, and (6.31) ;

4
~ *
53 ’ = - < v oD = - 1 = SLi e T
(6.35) B\i ) uk \):'\i ui, 1 {5 a
k=1
hence
(6. 36) i‘luk = -vi, o k=124,
and
a n
=1 -1 : * "
(6.37) B A=B (B+ | w L}t - 1 w2>< v,
k=1 * . k=1 X .

and (6.32) follows directly from (6.30). QED

Instead of (6.3G), one could also usce the relationships

* _1 *
(6. 38) vk B = —uk " b B (% RN, 8

-‘.

to ecstablish (6.32). The opexrator B % - A obtained from (6.31) is called MNurwit:z

pscudo.invcrso- of A [31, pp. 165-168; 12), which goes back to 1912,
By the same yeasoning as above, any operatox of the form
4 :
‘o
(6. 39) Meta=- ] w>p ser
kel X k I8
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for R.,R.,....,B such that R.B_...A. ¥ 0 will be an inner inversce of A . How-
=2 d 12 d

ever, as these operators are invertible, they cannot satisfy condition (2) of §1b

which characterizes outer inverses; consequently, the constiuction (6.39), while usc-

ful for some purposes, only gives a partial solution to the problem of finding gener-

alized inverscs.

Another matter of cemputational importance relates to the calculation of gencer-
alized inverses of perturbations of operators with known gencralized inverses.  Sup-
pose, fox o%amplc, that one has an cfficient technigque to obtain the Moore-Penrose
generalized inverse A+ of A [27), and then would like to use the resul { to obtain
the generalized inverses of perturbed operators B = A 4 AA with less effort than

¥ i

calculating B* ab initio , or error bounds for the approximation of B by A .
As A+ is not a continuous function of A in general, it would be expected that
analytic perturbation methods apply only under restrictive conditions, as even for

" AA” arbitrarily small, onc of the algebraic catastrophes that the rank of B is
greater or less than the rank of A could occur. Most applications of analytic pcr-
turbation theory to the above problems are cznrrﬁod out under assumptions that cnsure
rank(B) = rank(A), or that the change in rank is Xnown (23, pp. 333-351). Algebraic
perturbation methods, on the other hand, are nol necessarily subject to this kind of
limitation. For rank one modifications of A , C. D. Keyer  Jx. EXS: 23, ppa 35)-
352) has obtained formulas of the type

(G.40) (A 4+ u>< v)"‘ = A-“ + (‘:

for all six jpossible cases, where G d-opcnds on J\..t and the data. More general
finite-rank modifications (5.42) of A can then be handled by the method of succes-
sive rank one modifications corresponding to (5.51)-(5.52). This latter algorithm
was originated by Greville [9) for the recursive calculation of the Moore-Penrose
generalized inverse of a matrix. Formula (6.40) reduces to (5.28) in the special

oo Ak ; . : 1 e |
case that A is invertible, as for any generalized inverse of A, A = A

for
all A c J‘. This suggests the computational struivgy of using a method for gener-
alized inversion on an operator which is suspected of being singular oxr nearly singu-
lar. If the operator or the perturbzad operator actually involved in the calculation
is nonsingular, then this tughniquo will yield its inverse, whereas a straightfonvard
inversion method might fail.

Another approach to ill-posecd brob]cms is to approximate them by a perturbed
prub]om'which is well conditioned. An example is the technique of regularization,
due to A. N. Tihonov [39, 40]), which has close connections with the subject of gencr-
alized inverses [22). If the operator A in (1.1) does not have a bounded inverse,

then the smallest perturbation Ay in the data can cause an cnormous change Ax in
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the solution of the perturbed problem (2.3) as compared to the solution of the refer-
ence problem. A typical situation in which problems of this type arise in applica-
tions is that X and Y are Hilbert spaces, and A = K is a compact operator. Th
prototype of the resulting equation

(6.41) Kx =y K cX,

is the lincar Fredholm integral equation of the first kind ,

(6.42) . fl K(s,t)x(t)at = y(s), BErgd .

As pcrturbatiogs in (6.42) in actual practice are inevitable, due to errors of meas-
urement, discretization, and computation, direct numerical solution of (€.42) by
standard techniques that work well for the integral equation (4.5) of secend xind a
rarely successful. The same observation may be made for (6.41) as compared to

(6.43) (@I - K)x =y i

for a # 0. In order to find an acceptable approximate solution of the perturbed
version of (G.41), the method of regularization consists of finding an element

w(a) ¢ X which minimizes the functional

(6.44) £0wso) = e - 2} ® + 0%l % .

Thus, (6.44) represcents a trade-off between the fidelity with which the perturbed
equation Kw = z is satisfied, and the size of the norm of the corresponding solu-
tion. The paramcter a (or sometimes ﬁz) in (6.44) is called the regularization
parameter . The crucial problem in this field is the determination of the oplimal
regularization paramcter, for which the value of f(w;q) is minimum, or at least a
method for obtaining good approximations to the optimal value. A significant recent
advance in this area is the application by Grace Wahba [41) of the method of weighted
cross-validation to the case that the perturbation is due to discretization of the

data with random errors of the type known as “"white noise".

7. The eigenvalue-cigenvector problem.  As stated in §lc, this problem is to find
eigenvalues A and right eigenvectors x # 0 satisfying (1.9), where A € L(X,x),

X a Hilbert space. It follows that one is interested in the values of A for which
the linecar opcrator :

(7.1) T(A) = A - XX

is singular, and one may also want to find the left eigenvectors y # 0 of A
corresponding to the eigenvalue A which satisfy the homogcneous equation

(7.2) . y(dA - A1) =0 . b

The additional assumption will be made that the values of X considered arxe re-
stricted to those for which T(A) has a Fredholm thcory. This condition does not
exclude any X in the finite-dimensional algebraic case; however, for Fredholm inte-

gral operators of the first kind or compact operators in general, it is customary

)=
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to formulate the cigenvalue~-cigenvector problem in toryms of the reciprocal eigenvaluc
= 1/X, as the operator ;

(7.3) S(M) =1 - 1K, K&,

will bhave a Fredholm theory for all gcalars H.( A by Theorem 5.3. This is cquiva-
lent to excluding A = 0 from consideration in (7.1) if A is cowpact.

In order to contemplate the application of analytic perturbation methods to the
cigenvalue-eigenvector problem, it is escential to determine conditions under which
this problem is well-posed, as the operator T(X) will be singular if X is an cigoe:
value. One way to do this is to convert ecquation (1.9) and the normalization condi-

tion (1.10) into the npnlincar system

AX ~ Ax
(7.4) P(q) := b =0
1 1° .
= - =< X,x 2
2 b T
in the product space @ = X X A of vectors g= (x,A) , xe€e X, Xe A . Suppose
T . s :
that q, = (xl,).]) is a solution of (7.4); that is, Al is an cigenvalue of A ,
and X is a corresponding normalized cigenvector. Then, the implicit function

X

theorem [10) guarantees continuous dependence af the solution of (7.4) on the cdata i
the lincar operator p' ((3)) € L{0,0) has a bounded inverse, where P'(qg) is the rFréch:
derivat ive A - X -x >

(7.5) Piiq) =
- <x 0

~of the operator P at q (30, pp. 97-100). fThe formulation (7.4), while not the

+*
most general [1), has the advantage that if A is Hermitien (A = A [38, pp. 324-

327)), then so is P'(g). The following theorem gives an explicit formulation of the
inverse operator (P! (ql)]—l in this case if the defect of T(A) is cqgual to one,
that is, if all solutions x of the honegencous eguatlion T()\i)x = 0 are scalar
multiples of the normalized eigenvector Xy making use of the fact that the right
and left eigenvectors of an Hermitian operator can be identificd. :

Theorem 7.1. If A is llermitian, & > (xl')‘])T satisfies (7.4), "f"d the
defect of T(Al) is equal to one, then

~1
- X - >
% Bl xl >< )sl xl

(7.6) ll"(ql)l =

- <5xl .0
where

' R . oo T R

(7.7) . BJ. (A 7&1 Xy "1)

is the Nurwitz pseudoinverse of A - XII.
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Proof: It follows by dircct calculation and the use of (6.36) and (G.38) that
|

B." - x. 2% X -x, > B~ = x. ><x -x >
1
(7.8) P'(g)) : gare ST 1% B 3 1 . Piig,) =
e el
Xy 0 Xy 0
I 0
= '
0 1
the identity operator in Q@ = X X A . QED

By the usc of Theorem 6.2, formula (7.6) can be extended immediately to thie non-
Hermitian case le(ll) = T(Al)x1 = 0, provided the defect of T(Xl) remains cgual
to one [1, §3). Under these circumstances, results are available by the methods of
analytic perturbation theory similar to those for nonsingular lincar equations (1;1)
[x, §5].

For the finite-dimensional case, perturbation methods and error analyvsis for
the algcbraic eigenvalue problem have been presented in great detail in the compre-

hensive work by J. H. Wilkinson [44, pp. 62-188). Just one of these resulis will be

cited here, which fits into the framework of algebraic perturbation theory. Suppose
that w is a unit vector, and p = (w,u)T is an approximate solution of (7.4), so
that :

(7.9) (A - PD)w = r ,

with residual vector r . From eguation (5.38f, it follows that

(7.10) (A - r >< w*—-vlhv= o ,

so that w is an exact eigenvector of the perturbed operator

(7.11) = A -1 >< w*

corresponding to the cigenvalue W [44, pp. 170-171). The perturbed 6yexator B is
simply a rank one modification of the reference operator A .

Another application of algebraic perturbation theory to the cigenvalue-cigen-
vector problem has been given by W. Stenger [37]) to find incgualitices between eigen-

values of perturbed and reference integral operators.

8. Lincar programming. The solution of lincar progranmming problens as formulated

in §1d is one of the primafy tools for decision making in government and commerce at
the present time [(8). The number of variables involved is typically large, and a lot
of computer time is expended for this purpose. Thus,-an application of perturbation
theory which would increase efficiency could result in substantial savings. Once
again, the fact that the solutions do not depend continuously on the data in general

limits the applicability of analytic perturbation techniques. A necessary and

-29-
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sufficient condition for continuous dependence of the solution of the primal and dual
lincar programming problems in a neighborhood of solvable reference problems has been
given recently by S. M. Robinson [34). Studies of what is called parametric pro-
gramming  give conditions under which the solution of the reference problem remains
unchanged under perturbation of the data (8, pp. 144-154). On the subject of crror
estimation, P. Wolfe [45) has contributed a method for error analysis and control in
the solution of linear programming problems.

Although changes in the objective function (1.14) are not usually difficult to
deal with, perturbations in the constraints (1.15%5), as would result, for example, by
the introduction of a new technology in an industry, may require the complete rc-
starting of the solution method used. Conscequently, the following problem may be of
practical interest.

Problem 8.1. Given the solutien x of (1.14)-(1.15) and the associated infox-
mation, suvch as the choice of pivots in the simplex algorithm [45), find an efficient
method for solving
(8.1) minimize f(w) := <.d,w >+
subject to
(8.2) Bw<z, w2>0,
vhere all perturbations in the reference data arce of finite rank which is small com-

pared to the size of the reference problem.

9. Ronlincax problems. Although this survey has been concerned mainly with lincar
problems, it should be mentioned that perturbation methods are widely applied to the
solution of nonlinear opecrator cquations

(9.1) P(x) =0,

where P maps X into Y , and also fixed point problems in X of the form

(9.2) x = H(x) . .

(It is evident that (9.2) is a special case of (9.1); conversely, there are many ways
to convert (9.1) into an equivalent fixed point problem.)

These problems are well-poscd in the neighborhood of a solution xo if, for cx-
ample, H is continuous and cbntractive [30, Chapter 2), or, more restrictively, if
P is differentiable and
9.3) Ty = IP'(xy))”

0
pepending on the smoolliness of P , in this case one can base analytic perturbation

. ¢ L(Y,X).

techniques on the implicit function theorcem [10), Newton's method and its variants,
Taylor series expansions, inversion of power series, and so on [30, Chapter 4).
These methods are all essentially derived from the corresponding ideas of elemontary

scalar calculus,

-30-
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kcévntly. W. Rheinboldt has given generalizations of the condition nurbors (5.8)
and (5.9) for nonlincar operators for which (9.3) holds, and a correcponding gener-
alization of the perturbation formula (5.13) for crror estimation §33).

Algebraic perturbation methods for nonlincar operator cquations are less well

investigated. A nonlincar operator F with range belonging to the finite-dimensiona’

space
9.4 -' = S pd ' oo s
(9.4) . span {yl 5 yn)
will be of the form
n
(9.5) Pl = ) g LY,

where fl(‘),fy(‘),...,fn(°) are (generally nonlincar) functionals on X . The per-
turbed operator equation
(9.6) o(x) =0 ,

where Q = P - F, is equivalent to the equation

(9.7) P(x) = § Ev.

where =1 o

(9.8) : Cj = fj(x) ' =, 2 LN

Suppose, and this is the big assumption, that the cquation P(x) =y 1is solvable for

y ¢ ¥ ., that is, an operator G is known vhich gives
(9.9) x = G(€]'£2""f€n)

if P(x)=1y is of the foxrw (9.7). Then, applying fl,f .,fn in tura to (9.9)

e
yields the nonlinear system §
(9.10) Ci = hi(£1,€2,...,€n) 7 I G (1 (R, ,

where h] = flc, h2 = fZG""'hn = (nG ., which is a finite-dimensional fixcd-point
problem in A" of the form (9.2). On the basis of the additional assuimption that
(9.10) is solvable, the substitution of its solutions El,ﬁz,...,ﬁn into (9.9) pro-
vides a solution x of the nonlincar operator equation (9.6). As an examnple of Fhiﬁ
approach, the Hammerstein integral cquation with kernel (5.31) )

(9.11) x(s) = J* K(s,00(t,x())at = 0
0

is a rank one modification of the nonlinear Volterra integral eguation

(9.12) x(s) - [° Ls, )¢ (t,x(t))at = 0
0

with Xernel (5.33). Thus, if one can solve

1

(9.13) xts) - [% L(s,)0(t,x(t))at = Euls) ,
0 :
vherxe
(9.14) £= 1 vioexae .
0]
-31-
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for x(s) = g(s;£), then fiom (9.14), -the system (9.10) is cquivalent to the scalar
fixed point problem

1

(9.15) e n(l) = [0 vld(t, gl 0)0ae ,
0

vhich is one nonlincar cquation in onc wnknown [32, §9).

Although guite a bit is known about nonlincar systems (9.10) in finite-dimen-
sional spaces [28), the theory and practice of their solution is far from the highls
developed technology available for finite lincar systems (5.44). There is alse the
ever-present big assumption. Even though (2.9) is not obtainable explicitly, the

v . : . . (0) . (0)
form of the problem (9.7) suggests iteration: Selve (9.7) for given 5,1 't"2 B

l,xgo), substitute into (9.10) to obtain

(9.16) Al S Cim 1—.1({.10)3;2(0),...,!;l(]m), N RO

and so on. In the casc that (9.6) is a boundary-value problem for a nonldinear diffc

ential cquation, this is called “shooting" [13, Chapter2, also £6.1]. Of course, this

iterationnay not converge,and some other method for solving (9.6) may be more approyric’
This section will also conclude with an important problem, as much more work

needs to be done.

Problem 9.1, For differcntiable P , develop existence theory and find effcc-

tive technicues for computing solutions %0 of the nonlinear operator eguation (9.1

in the case that P'(,\:O) does not have a bounded inverse.
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